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Abstract
Purpose  To evaluate the performance of combined PET and multiparametric MRI (mpMRI) radiomics for the group-wise 
prediction of postsurgical Gleason scores (psGSs) in primary prostate cancer (PCa) patients.
Methods  Patients with PCa, who underwent [68 Ga]Ga-PSMA-11 PET/MRI followed by radical prostatectomy, were included 
in this retrospective analysis (n = 101). Patients were grouped by psGS in three categories: ISUP grades 1–3, ISUP grade 
4, and ISUP grade 5. mpMRI images included T1-weighted, T2-weighted, and apparent diffusion coefficient (ADC) map. 
Whole-prostate segmentations were performed on each modality, and image biomarker standardization initiative (IBSI)-
compliant radiomic features were extracted. Nine support vector machine (SVM) models were trained: four single-modality 
radiomic models (PET, T1w, T2w, ADC); three PET + MRI double-modality models (PET + T1w, PET + T2w, PET + ADC), 
and two baseline models (one with patient data, one image-based) for comparison. A sixfold stratified cross-validation was 
performed, and balanced accuracies (bAcc) of the predictions of the best-performing models were reported and compared 
through Student’s t-tests. The predictions of the best-performing model were compared against biopsy GS (bGS).
Results  All radiomic models outperformed the baseline models. The best-performing (mean ± stdv [%]) single-modality 
model was the ADC model (76 ± 6%), although not significantly better (p > 0.05) than other single-modality models (T1w: 
72 ± 3%, T2w: 73 ± 2%; PET: 75 ± 5%). The overall best-performing model combined PET + ADC radiomics (82 ± 5%). It 
significantly outperformed most other double-modality (PET + T1w: 74 ± 5%, p = 0.026; PET + T2w: 71 ± 4%, p = 0.003) 
and single-modality models (PET: p = 0.042; T1w: p = 0.002; T2w: p = 0.003), except the ADC-only model (p = 0.138). In 
this initial cohort, the PET + ADC model outperformed bGS overall (82.5% vs 72.4%) in the prediction of psGS.
Conclusion  All single- and double-modality models outperformed the baseline models, showing their potential in the pre-
diction of GS, even with an unbalanced cohort. The best-performing model included PET + ADC radiomics, suggesting a 
complementary value of PSMA-PET and ADC radiomics.
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psGS	� Postsurgical Gleason score
PSMA	� Prostate-specific membrane antigen
RBF	� Radial basis function
RFE	� Recursive feature elimination
RP	� Radical prostatectomy
stdv	� Standard deviation
SMOTE	� Synthetic minority oversampling technique
SUV	� Standard uptake value
SVM	� Support vector machine
T1w	� T1-weighted MR image
T2w	� T2-weighted MR image
VOI	� Volume of interest

Introduction

Prostate cancer (PCa) is a leading cause of cancer-associated 
morbidity and mortality in men [1]. Diagnosis of PCa is 
commonly achieved by ultrasound-guided needle biopsy and 
can be improved by multiparametric magnetic resonance 
imaging (mpMRI) [2, 3]. Positron emission tomography 
(PET) imaging with PCa-specific tracers can help the deline-
ation of suspicious lesions for guiding repeated biopsies or 
to improve the sensitivity of lesion detection [2, 4]. More 
recently, 68 Ga-radiolabelled prostate-specific membrane 
antigen PET (PSMA-PET) demonstrated superiority over 
other imaging modalities and PET radiotracers in localiz-
ing primary staging and biochemical recurrent PCa [5–7]. 
Moreover, [68 Ga]Ga-PSMA-11 PET/MRI showed promis-
ing results in aiding targeted biopsy after a previous negative 
biopsy in patients with high suspicion of PCa [8–10].

Patients with histologically confirmed PCa are initially 
stratified into risk groups according to serum prostate-spe-
cific antigen (PSA) levels, histological findings, and digi-
tal-rectal examination results [4]. The Gleason score (GS) 
extracted from biopsy results or after radical prostatectomy 
(RP) is the main tool for prognosis, and an indicator of the 
aggressiveness of PCa. Recently, the International Society of 
Urological Pathology (ISUP) reached a consensus regroup-
ing of the GS into 5 Gleason Grade Groups (GGG) [11], 
according to their correlation with patient outcome.

However, in approximately one-third of the patients, 
biopsy GS (bGS) is different from the final GS determined 
after surgery (postsurgical GS, psGS), with biopsies tending 
to underestimate cancer aggressiveness [12]. These discrep-
ancies between the two GS can have important implications 
in patient management. Therefore, accurate determination 
of PCa aggressiveness by adding pre-therapeutic imaging 
features is of high clinical interest.

To achieve this goal, data-driven strategies received much 
interest in the last decade. In this work, we focus on radiom-
ics, which is the extraction of image features from medical 

images and their use to build models for improved decision 
support. Hand-crafted radiomic features have been previ-
ously applied for aiding detection and prognosis in breast 
cancer [13], lung cancer [14], and glioma [15]. MRI-only 
radiomics have also been applied in PCa prognosis, using 
GS as a proxy [16–18]. PSMA-PET radiomics [19] and other 
PET tracers [20] have been independently applied in the 
discrimination between low- to intermediate-risk (GS ≤ 7 or 
GGG 1–3) and high-risk (GS ≥ 8 or GGG 4–5) PCa.

In this study, we investigated the performance of hand-
crafted radiomic features extracted from pre-therapeutic 
[68 Ga]Ga-PSMA-11 PET/MRI in predicting psGS in three 
categories (GGG 1–3, GGG 4, GGG 5). The selection of 
the three categories was based on a compromise between 
a more comprehensive prediction, knowing that all the 
selected Gleason categories represent different clinical out-
comes [21], and the availability of data, since there were not 
enough patient data to represent every Gleason category.

The complementary value of PET and MRI radiomics 
was evaluated by comparing single- (PET or MRI) and 
double-modality (PET + MRI) radiomics. In addition, the 
performance of image-based models was compared to two 
baseline models: the first one trained with clinical patient-
data only, and the second one trained with volume and 
maximum intensity radiomic features only. Finally, psGS 
predictions from the best-performing model were compared 
to assuming bGS.

Methods

Patient population

Patients with histopathologically proven primary adeno-
carcinoma of the prostate who (i) received a [68 Ga]Ga-
PSMA-11 PET/MRI at our institution between November 7, 
2012, and February 13, 2014, for initial staging of PCa, (ii) 
had undergone RP, and (iii) had available surgery-obtained 
GS were included in this retrospective analysis. Out of the 
132 screened patients, 101 met the eligibility criteria and 
were included in this study, whereas 31 patients did not 
include all the necessary MR images and were excluded. 
Patient characteristics are summarized in Table 1. Clinical 
and histopathological information were extracted from hos-
pital database. All patients provided written informed con-
sent for data evaluation and publication. The retrospective 
data analysis was approved by the medical ethics committee 
of the Technical University of Munich (reference number: 
5665/13S).

The histopathology data were extracted from RP pathol-
ogy reports. GS values were patient-based, meaning that 
the total GS per patient was selected, consisting of the sum 
of the scores of the two most dominant Gleason patterns. 
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Patients were grouped by GS into three categories: lower 
than 8 (GGG 1–3), equal to 8 (GGG 4), and higher than 8 
(GGG 5).

Imaging protocol

Imaging was performed on an integrated whole-body PET/
MRI system (Biograph mMR, Siemens Healthineers, Erlan-
gen, Germany) with a 3 T MRI system. PET images were 
obtained after intravenous injection of a median of 142.0 
(interquartile range [IQR]: 118.3–156.8) MBq of [68 Ga]
Ga-PSMA-11 synthesized as previously described [22]. 
Twenty milligrams of furosemide were injected right after 
tracer administration. PET/MRI acquisitions started at a 
median of 60.4 (IQR: 51.5–73.2) minutes following radi-
opharmaceutical injection. Subsequently, mpMRI examina-
tion of the prostate was performed simultaneously within 
a 15-min single bed position PET scan (PET), including a 
coronal T1-weighted image (T1w), an isotropic T2-weighted 
image (T2w), and an axial apparent diffusion coefficient map 
(ADC), all centered on the prostate. All acquisition and 
reconstruction protocols for both PET and MRI sequences 
were the same for all patients included in the present study 
(Supplementary Table 1).

Image segmentation

For the extraction of radiomic features, volumes of interest 
(VOI) in PSMA-PET and MRI images were first individu-
ally segmented. To avoid the limitations of radiomics for 
small lesions in PET images [23] and the complexities of 
multi-lesion characterization through hand-crafted radiomic 
features, whole-prostate segmentations were performed. 
PSMA-PET images were segmented using a previously 

validated fuzzy-logically adaptive Bayesian (FLAB) seg-
mentation tool [24], which provides accurate estimation 
of volumes of interest through modelling of noise and blur 
characteristics of PET imaging [25]. Whole prostates from 
MR images (T1w, T2w, and ADC maps) were manually seg-
mented in each modality. The segmentations were performed 
by a nuclear medicine physician with 3 years of experience 
in PSMA hybrid imaging.

Radiomic features extraction

The radiomic features were extracted from the segmented 
volumes, in accordance to the image biomarker standardi-
zation initiative (IBSI) guidelines [26]. Two different dis-
cretization approaches were used. To preserve the original 
intensity scale and meaning of the voxel values, quantita-
tive functional imaging modalities (PSMA-PET and ADC 
maps) were discretized using fixed bin width (FBW) sizes 
(bin sizes PET [SUV] = 0.030, 0.060, 0.125, 0.250, 0.500, 
1.000; bin sizes ADC [10−6 mm2/s] = 10, 25, 50, 100, 200, 
400). According to the IBSI guidelines, in order to normal-
ize the images and prioritize contrast inside the VOIs, the 
discretization of non-quantitative MRI T1w and T2w images 
was performed using fixed bin numbers (FBNs, number of 
bins = 8, 16, 32, 64, 128, 256) discretization. From these 
discretization schemes, the best-performing one for each 
model based on its balanced accuracy was selected as the 
final model.

Overall, 107 3D radiomic features were extracted from 
the original VOIs without resampling, using PyRadiomics 
[27], which included: first order (n = 18), shape (n = 14), 
Gray Level Co-occurrence Matrix (GLCM) (n = 24), Gray 
Level Size Zone Matrix (GLSZM) (n = 16), Gray Level 
Run Length Matrix (GLRLM) (n = 16), Neighbouring Gray 
Tone Difference Matrix (NGTDM) (n = 5), and Gray Level 
Dependence Matrix (GLDM) (n = 14). The feature extrac-
tion workflow is described in Fig. 1.

Based on previous works [28–31], six features derived 
from commonly used PSMA-PET quantitative biomarkers 
were also included among the PSMA-PET features: SUVpeak 
(maximum average SUV within a 1-cm3 spherical volume), 
relative SUVpeak (ratio of SUVpeak and the mean SUV of the 
VOI), volume of the 40% of SUVmax isocontour [40% Vol-
ume], volume fraction of the 40% isocontour [40% Fraction], 
SUVmean in the 40% isocontour [40% SUVmean], and “Total 
SUV” (product of the 40% SUVmean and the 40% Volume). 
The isocontour volume and the “Total SUV” features were 
based on “PSMA-ligand tumor volume” [PSMA-TV] and 
“PSMA-ligand total lesion” [PSMA-TL] [28], adapted to 
our prostate segmentation.

All the features used in this work are described in the 
Supplementary Table 2.

Table 1   Patient cohort characteristics. Data are median (interquartile 
range) or n (%); PSA, prostate-specific antigen; RP, radical prostatec-
tomy; *Missing biopsy results for 30 patients (n = 71)

All eligible patients 

(n=101)

Age (years) 68 (63-73)

Weight (kg) 84 (77-95)

Gleason score (biopsy) *

<8 (GGG 1-3) 31 (44%)

=8 (GGG 4) 19 (27%)

>8 (GGG 5) 21 (30%)

Gleason score (RP)

<8 (GGG 1-3) 60 (59%)

=8 (GGG 4) 23 (23%)

>8 (GGG 5) 18 (18%)

initial PSA (ng/ml) 12 (7.3-28.1)
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Prediction models

A machine learning model was trained to identify GS using 
a 3-class support vector machine (SVM) with a radial basis 
function (RBF) kernel and a “one-vs-rest” multi-class 
approach. The SVM was trained with up to 10 previously 
selected PET and MRI radiomic features, using a recursive 
feature elimination (RFE) method for the selection of the 
radiomic signature. The cohort was split into training and 
validation sets using a sixfold stratified cross-validation, 
with a 2:1 patient ratio for training (n = 67) and validation 
(n = 34) in each fold, respectively. As examples of radiomic 
signatures, the three most relevant features of two models 
(with ADC and PET radiomics, respectively) are presented 
in Fig. 2 for three example patients.

Given the strong class imbalance (59% of the patients 
belong to the class GGG 1–3), a method to balance the train-
ing datasets is required. There are several alternatives, which 
usually imply an oversampling of the less prevalent classes, 
an undersampling of the most prevalent class, or a combina-
tion of both. With a limited dataset, our study is better suited 
for oversampling techniques, to avoid neglecting important 
information. The synthetic minority oversampling technique 
(SMOTE) was applied to oversample all training features in 
both less prevalent classes (GGG 4 and GGG 5) up to a 1:1 
proportion with the most prevalent class (GGG 1–3). The 
augmented training data was used to train the SVM for each 
of the 6 cross-validation cycles. The trained models were 
then tested in the prediction of GS with the non-augmented 
validation data. The implemented training and validation of 
the models is displayed in Fig. 3.

Separate models were trained using either radiomic fea-
tures from a single image type (single-modality models: 
PSMA-PET, T1w, T2w, ADC) or combined from PET 
and each MR sequence (double-modality models: PSMA-
PET + T1w, PSMA-PET + T2w, PSMA-PET + ADC). The 
use of more than two image types — such as PET and sev-
eral MR sequences — was not implemented for two reasons: 
first, the exponentially higher computing time required to 
train a model with all the features and combined hyperpa-
rameters from many modalities; second, the relative low 
outcome changes obtained from adding extra modalities in 
previous experiences [32].

We compared our radiomic models against two ad hoc 
baseline SVM models to evaluate their performance. With 
these comparisons, we investigated if our radiomics per-
formed better than using other available information. To 
study the added value of image radiomics beyond con-
ventional clinical information, a patient-data baseline was 
established. To confirm that our models did not only rely on 
surrogates of volume or maximum intensity voxel values, 
an image-based model (“radiomics baseline”) was trained. 
This echoes previous studies [23, 33] which suggest that, 
if left unchecked, some radiomics signatures may be little 
more than proxies for simpler statistics, like the number of 
voxels of the VOI (i.e., its volume). Adding such a baseline 
model helps us discard this hypothesis whenever our models 
outperform the radiomics baseline, implying that our models 
rely on more complex features.

For the training of these two baseline models, we fol-
lowed the same workflow as in the image radiomics models 
(Fig. 3), but instead of starting with a set of image radiomic 

Fig. 1   Feature extraction workflow for PSMA-PET and mpMRI images
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features, we used: only relevant patient data (i.e., age, 
weight, and initial PSA [iPSA]) for the patient-data base-
line; only VOI volume and maximum values (i.e., PET VOI 
volume, SUVmax, and ADCmax) for the radiomics baseline.

Statistical analysis

Since the dataset was unbalanced and classification perfor-
mance can be different for each of the 3 classes, the results 
are expressed as the balanced accuracy (bAcc) among the 
three classes (Eq. 1):

(1)bAcc =
1

3

(

TP
GGG1−3

(TP + FN)GGG1−3
+

TP
GGG4

(TP + FN)GGG4
+

TP
GGG5

(TP + FN)GGG5

)

;

where TPCLASS is the number of True Positive classifica-
tions for the class CLASS, and FNCLASS is the number of 
False Negative classifications for the class CLASS.

The results from the GS predictions are presented as the 
sixfold mean and standard deviations of bAcc, sensitivities, 
and specificities of the best prediction using the validation 
data. Results from the baseline models, PET-only radiom-
ics, each MR-modality (T1w, T2w, ADC) radiomics only, 
and combined PET + MR radiomics were compared using 
Student’s t-test (statistical significance: p < 0.05; normality 

Fig. 2   Examples of radiomic signatures (three most relevant features only) of three patients, one per GS category
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test: Shapiro–Wilk), to evaluate the complementary value of 
radiomics from both imaging modalities.

To assess the potential clinical value of using PET-MR 
radiomics in the prediction of GS, we compared the use of 
biopsy GS (bGS) as a substitute for postsurgical GS against 
the predictions from our best-performing model. All the pre-
dictions from our best-performing model on our validation 
data were compared to bGS only in the patients with both 
bGS and psGS available. We inform the balanced accuracy 
of the predictions, as well as the sensitivity and specificity 
of the predictions for each GS class.

Since most previous studies saw interest in presenting 
their results in two categories (lower/intermediate vs high 
risk), we also present the results of our best-performing 
model in this fashion (GGG 1–3 vs GGG 4–5).

The statistical analysis was performed using numpy and 
scipy.stats in Python.

Results

The 101 patients who met the eligibility criteria were 
grouped by GS into three categories: GS < 8 (GGG 1–3: 60 
[59%] patients), GS equal to 8 (GGG 4: 23 [23%] patients), 
and GS > 8 (GGG 5: 18 [18%] patients). In each cross-vali-
dation cycle, two-thirds of the patients (n = 67) were selected 
from each class as training data (GGG 1–3: 40, GGG 4: 15, 
GGG 5: 12), leaving the rest (n = 34) as validation (20, 8, and 
6 patients, respectively). The best-performing model (highest 
average bAcc in the validation) for each image modality was 
selected for comparison. The characteristics of the selected 
models are summarized in the Supplementary Table 3.

Three out of four single-modality models (PET, T1w, 
T2w) used a combination of first order, shape, and textural 
radiomics features, except the ADC model, which did not 

include any first order features. All double-modality models 
(PET + T1w, PET + T2w, PET + ADC) included both PET 
and MR features.

Across the PET-only model and all double-modality mod-
els (all of which include PET radiomics), the most often 
selected PET features were the shape feature “Maximum 2D 
Diameter Row” (present in all 4 models) and the quantita-
tive biomarker “Total SUV” (present in 3 out of 4 models).

In both models including ADC features, textural ADC 
features were predominant over shape and first order fea-
tures (with ratios 6:1 and 5:2 textural features over the rest, 
respectively). In both models including T2w features, shape 
features were the most frequent (4:3 and 5:1, respectively). 
In the models with T1w features, the selected feature ratio 
was more evenly distributed among the 3 types (first order/
shape/textural: 2:1:6 and 3:1:3, respectively).

The performances of the implemented models are sum-
marized in Table 2. For a visual comparison, Fig. 4 displays 
a box plot of the bAcc of all radiomic and baseline models.

The comparisons between models were performed 
using the validation bAcc (mean ± standard deviation). 
For the patient-data baseline model and the radiomics 
baseline model, the bAcc was 58 ± 5% and 65 ± 7%, 
respectively. All single-modality models (T1w: 72 ± 3%; 
T2w: 73 ± 2%; ADC: 76 ± 6%, PET: 75 ± 5%) provided 
a significantly better classification performance than 
the patient-data baseline (p < 0.001). The radiomics 
baseline model, while exhibiting a higher bAcc, did not 
significantly outperform the patient-data baseline. Most 
single-modality models outperformed also the radiomics 
baseline model, except the T1w model (T2w: p = 0.034, 
ADC: p = 0.018, PET: p = 0.018, T1w model: p = 0.060). 
Among the single-modality models, the model trained 
with ADC radiomics provided the highest performance 
(76 ± 6%), although not statistically higher than any of the 

Fig. 3   Training and validation workflow of each SVM model for the prediction of GS
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other single-modality radiomics models (p > 0.05). The 
sensitivities of this model were similar across classes, 
but slightly higher for GGG 5 (sens: GGG 1–3: 73 ± 7%; 
GGG 4: 74 ± 16%; GGG 5: 78 ± 7).

A model trained with combined features from PSMA-
PET and ADC map radiomics yielded the highest overall 
accuracy (82 ± 5%). It significantly outperformed most 
single-modality models, including the PET-only (with 
p = 0.042), T1w-only (p = 0.002), and T2w-only (p = 0.003), 
while the difference with the best model trained with ADC-
only radiomics was not statistically significant (ADC: 
76 ± 6%, p = 0.138). The better performance of this model 
resulted from the highest sensitivity to the higher risk groups 
but at the cost of a lower sensitivity to the low/intermediate-
risk group (sens: GGG 1–3: 71 ± 10%; GGG 4: 82 ± 16%; 
92 ± 8%).

The addition of T1w or T2w radiomics to PSMA-PET 
radiomics (74 ± 5% and 71 ± 4%, respectively) did not 
significantly alter the performance of single-modality 
models (p > 0.05). Combined PET + ADC radiomics sig-
nificantly outperformed both of these double-modality 

models (PET + ADC: 82 ± 5%; p-value: 0.026 and 0.003, 
respectively).

P-values for all model combinations are summarized in 
Table 3.

For the best-performing model, the results of the 
classification of lower/intermediate- vs high-risk Glea-
son categories (GGG 1–3 vs GGG 4–5) are presented 
in Table  4. The best-performing baseline model was 
again the radiomics baseline (74 ± 5%), although not 
significantly better than the patient baseline (69 ± 8%, 
p = 0.203). The hybrid PET + ADC model (82 ± 6%) 
outperformed the patient and radiomics baseline models 
overall (p = 0.011 and 0.029, respectively), with a much 
higher sensitivity to GGG 4–5 (patient baseline: 74 ± 11; 
radiomics baseline: 74 ± 13; PET + ADC: 94% ± 8) at the 
cost of a slightly poorer sensitivity to GGG 1–3 (patient 
baseline: 63 ± 21%; radiomics baseline: 75 ± 11%; 
PET + ADC: 71 ± 10).

From the 71 patients with both available psGS and bGS 
(GGG 1–3: 62% (n = 44); GGG 4: 20% (n = 14); GGG 5: 
18% (n = 13)), our model outperformed the bGS in predict-
ing psGS overall (bAcc: 82.5% vs 72.4%, respectively) 

Table 2   Performances of the trained models (top, grey: baseline mod-
els; center, green: single-image radiomics; bottom, orange: double-
image radiomics) on the validation dataset, expressed as their bal-

anced accuracies, sensitivities, and specificities (mean and standard 
deviation, in percentages)

Model
Balanced 
accuracy

[%]

Sensitivity [%] Specificity [%]

GGG 1-3 GGG 4 GGG 5 GGG 1-3 GGG 4 GGG 5
mean stdv mean stdv mean stdv mean stdv mean stdv mean stdv mean stdv

pa�ent
baseline 57.55 4.98 63.48 21.35 45.00 24.32 64.17 30.06 74.44 11.26 78.10 14.01 84.37 6.51

radiomics 
baseline 65.11 7.17 74.51 11.09 50.00 8.16 70.83 23.17 74.03 13.08 82.07 10.32 91.59 7.80

T1w 71.74 2.69 81.89 9.99 58.33 19.54 75.00 14.43 67.86 2.06 92.08 10.23 92.08 5.15
T2w 72.60 2.20 80.29 6.98 72.92 18.04 64.58 26.60 74.70 7.01 89.15 9.29 92.06 7.36
ADC 76.12 6.22 78.37 12.71 79.17 21.65 70.83 29.76 82.59 12.00 84.53 10.00 95.20 5.48
PET 74.90 4.53 72.55 6.63 73.81 15.97 78.33 6.87 86.06 6.35 83.99 4.72 90.11 8.19
PET+T1w 73.85 4.90 75.23 11.32 69.64 9.43 76.67 15.28 78.98 12.31 85.99 6.41 91.52 7.92
PET+T2w 70.96 4.09 74.77 13.44 67.26 22.98 70.83 18.16 75.80 10.00 83.19 9.64 93.49 3.91
PET+ADC 81.57 5.24 70.91 9.58 82.14 15.57 91.67 8.33 91.99 8.03 83.87 7.27 90.22 4.53

Fig. 4   Boxplot of the balanced 
accuracies of all best-perform-
ing models on the validation 
sets
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and within each group (sensitivity: GGG 1–3: 72.3% vs 
68.2%; GGG 4: 84.0% vs 64.3%; GGG 5: 91.3% vs 84.6%, 
respectively). The comparisons between biopsy GS and 
the PET + ADC model in predicting psGS can be found 
in Table 5.

Discussion

In this work, we studied the potential of hand-crafted 
radiomics from [68 Ga]Ga-PSMA-11 PET/MR images for 
predicting postsurgical Gleason scores. Previous to this 
study, the literature on the impact of PET/MRI on PCa 
radiomics was scarce. In addition, we used a prediction 
of three GS categories, instead of two as in most previ-
ous studies. Important aspects of our work are discussed 
below: the rationale in choosing our segmentation meth-
ods, the results of the feature selection and GS predictions, 
and limitations and perspectives on future work.

Our segmentation strategy implied a trade-off, which 
intended to minimize the complexity while achieving 

effective radiomics. In VOIs with a small number of 
voxels, radiomics analysis cannot provide much comple-
mentary information to the VOI volume [23]. Since PET 
images have large and rather low-resolution voxels, small 
prostate lesions are prone to render many radiomic fea-
tures into surrogates of the number of voxels (i.e., lesion 
volume). To overcome this limitation, we segmented the 
whole-prostate gland. Overall, image-based models per-
formed significantly better than the radiomic baseline, 
indicating that the classification was not merely based on 
volume surrogates.

Another argument for whole-prostate segmentations 
was to reduce the complexity of the radiomics workflow. 
In the case of multi-lesion PCa, a feature extraction process 
using multiple VOIs would have implied a more complex 
mechanism to aggregate the radiomics features throughout 
the lesions. To make matters more complex, PCa lesions 
are not always simultaneously present in all image modali-
ties, making the segmentations and the feature extraction 
more cumbersome or even impossible for different images. 

Table 3   Correlation matrix 
(p-values) from unpaired t-tests 
between all model performances 
(balanced accuracies) and 
Shapiro–Wilk normality test 
significance. 

T-test

p-
value

pa�ent
baseline <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001***

radiomics 
baseline 0.060 0.034* 0.018* 0.018* 0.033* 0.113 <0.001***

T1w 0.558 0.144 0.173 0.377 0.705 0.002**
T2w 0.221 0.289 0.581 0.407 0.003**
ADC 0.706 0.499 0.120 0.138
PET 0.708 0.145 0.042*
PET+T1w 0.448 0.026*
PET+T2w 0.003**

Model T1w T2w ADC PET PET
+T1w

PET
+T2w

PET
+ADC

Shapiro-Wilk normality

Model pa�ent 
baseline

radiomics 
baseline T1w T2w ADC PET PET+T1w PET+T2w PET+ADC

p 0.813 0.303 0.442 0.780 0.602 0.338 0.448 0.780 0.363

Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001; otherwise: not statistically significant 
(grey: baseline models; green: single-image models; orange: double-image models)

Table 4   Performances of the baselines vs the best-performing model 
trained on 3 GS groups (GGG 1–3, GGG 4, GGG 5) and tested on 2 
GS groups (GGG 1–3, GGG 4–5) (top, grey: baseline models; bot-
tom, orange: double-image radiomics), expressed as their balanced 

accuracies (mean and standard deviation, in percentages), and sen-
sitivities by class (t-test comparisons: patient baseline vs radiomics 
baseline: p = 0.203; patient baseline vs PET + ADC: p = 0.011; radi-
omics baseline vs PET + ADC: 0.029)

Model
Balanced 

accuracy [%]
Sensitivity GGG 1-3

[%]
Sensitivity GGG 4-5

[%]
mean stdv mean stdv mean stdv

pa�ent
baseline 68.96 8.39 63.48 21.35 74.44 11.26

radiomics 
baseline 74.27 4.56 74.51 11.09 74.03 13.07

PET+ADC 82.45 6.40 70.91 9.58 93.99 8.03
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Our whole-prostate approach ensured not only big enough 
VOIs (of more than one thousand voxels) but also a simpler 
segmentation and feature extraction process, with only one 
VOI per image type. This is also a logical approach from a 
clinical perspective, since one patient would have different 
GS values across lesions, but only the highest (index lesion) 
is considered for treatment and prognosis.

After extracting the features from different VOIs, the 
weakest features were removed through recursive feature 
elimination (RFE). RFE works by fitting an SVM model 
with all the features, and eliminating the feature that the 
SVM considers less relevant. This process is repeated sev-
eral times, eliminating one feature at a time, so as to leave 
only the highest ranked and less interdependent ones. One 
characteristic of all models was that the prostate radius was 
always selected as a feature, which may be accounting for 
the effect of prostate volume in the detection of prostate 
cancer lesions [17]. In particular, the models containing T2w 
radiomic features relied mostly on this and other shape fea-
tures, relegating first order and textural features to a lesser 
role. These selected radiomic features not only reflect image 
information that is important for the classification but are 
also influenced by the chosen segmentation method [31]. 
The models with ADC features, on the other hand, were 
the two best-performing models and relied mainly on the 
textural properties of the prostate, instead of its shape fea-
tures. Interestingly, most PET models repeatedly selected a 
commonly used quantitative biomarker based on PSMA-TL, 
stressing its importance in predicting GS.

The best-performing single-modality models 
included PSMA-PET (bAcc = 75 ± 5%) and ADC map 
(bAcc = 76 ± 6%) features, which concordantly are the 
focus of most previous literature [16–20]. Overall, the best-
performing model was the one that combined features from 
both highest-performing single modalities (PET + ADC, 
bAcc = 82 ± 5%), demonstrating the added value of the 
multi-modality approach compared to either PET-only or 
MR-only radiomics. It is interesting to note that the better 
performance of this model emerged from a higher sensitivity 
to high-risk groups (GGG 4 and 5), trading sensitivity in the 
prediction of the low/intermediate-risk groups (GGG 1–3), 
which implies a misdiagnose (overgrading) of a considerable 
percentage of low/intermediate-risk patients. As a trade-off, 
the specificity of low/intermediate-risk patients and the sen-
sitivity to high-risk patients are greatly improved.

All image-based models performed significantly better 
than the patient-data baseline, demonstrating that image 
radiomics provide additional information to the available 
clinical parameters. Most models also significantly out-
performed the radiomics baseline, except for the T1w and 
PET + T2w models. This implies that, for most models, the 
selected combinations of features were not mere surrogates 
of volume or intensity, even though some features that cor-
relate with volume were involved in the classification.

The results from the predictions of low/intermediate- vs 
high-risk Gleason scores require a special discussion. First, 
it is important to clarify that, although our model allow the 
predictions of two categories (by combining the predic-
tions of both upper categories, GGG 4 and GGG 5), it was 
trained for the prediction of three categories. Since it was 
not optimally trained for this prediction, it would most likely 
underperform in comparison to a real two-category model. 
Second, we trained our model to optimize the balanced accu-
racy, which has no bias towards a particular category. In 
combining two categories, we are imposing a bias towards 
these categories, hindering the remaining category. Even so, 
the overall predictions of the PET + ADC model (82 ± 6%) 
were still superior to both baseline models (69 ± 8% and 
74 ± 5%), at the cost of a lower sensitivity to the low/inter-
mediate-risk category.

As we mentioned, our study has potential clinical impli-
cations. Given that not every patient undergoes radical 
prostatectomy, the biopsy GS is usually used instead of the 
postsurgical GS in the clinical routine, even though they are 
not always equivalent. Our hybrid radiomics model outper-
formed the use of biopsy GS in estimating the postsurgical 
GS (82.5% vs 72.4%). It is important to note that our dataset 
lacked biopsy GS for around 30% of the patients. With a 
larger initial cohort (implying more patients with simultane-
ous postsurgical and biopsy GS data), we would be able to 
analyze the power of combined biopsy GS and image radi-
omics in the prediction of postsurgical GS. As an alternative, 
we could also use the biopsy GS as part of the patient-data 
baseline, as a more clinically relevant baseline model.

Our study is not without limitations. Firstly, family-
wise error rates (FEWRs) across the statistical analyses 
were not controlled, meaning that several comparisons 
between models were performed through a statistical test 
(i.e., Student’s t-test), without correcting for the higher 
probability of Type I errors. Secondly, our results show 

Table 5   Comparison of the prediction of postsurgical GS (psGS) 
between our best-performing model (orange: PET + ADC radiomics) 
and the biopsy GS (bGS, white) on the patients with both psGS and 

bGS available, expressed as their balanced accuracies, sensitivities, 
and specificities (in percentages)

Model
Balanced 
accuracy

[%]

Sensitivity [%] Specificity [%]

GGG 1-3 GGG 4 GGG 5 GGG 1-3 GGG 4 GGG 5
PET+ADC 82.53 72.29 84.00 91.30 91.66 83.02 93.52
Biopsy GS 72.36 68.18 64.29 84.62 96.30 82.46 82.76
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high intragroup variances in the performance of most 
classifiers (Table 2). In particular, even though the model 
trained with PET + ADC radiomics outperformed the rest 
of the models in terms of balanced accuracy, the difference 
with respect to the ADC-only model was not statistically 
significant. The high variances can be partly attributed 
to the small number of patients and strongly unbalanced 
dataset, which implies that, in each fold, only radiom-
ics from around 15 or 12 patients (GGG 4 or GGG 5, 
respectively) were used for training the models, and 8 or 
6 patients (GGG 4 or GGG 5, respectively) were used for 
evaluation in the less prevalent GS classes. More robust 
models with lower variability between successive training 
cycles would require a larger cohort and, ideally [34], an 
external testing cohort.

Although GS is widely used as a proxy for the aggressive-
ness of PCa, it must be used with caution. Studies show that, 
in some cases, the fraction of Gleason patterns relate to the 
outcome of patients better than the GS [35]. For instance, 
GS 7 tumors represent a rather diverse population and, as a 
consequence, there is clinical value in further differentiat-
ing it in subcategories. In our work, we focused on demon-
strating that [68 Ga]Ga-PSMA-11 PET and mpMRI would 
synergically work in the prediction of GS, but our results 
could profit from considering the outcome of the patients 
beyond GS.

In our work, we took advantage of the benefits of 
whole-prostate segmentations, but our segmentation 
approach has room for improvement. The PI-RADS v2 
protocol [36] proposes a two-region approach for PCa 
diagnosis with mpMRI. According to the protocol, DWI/
ADC map is the most informative sequence for the assess-
ment of PCa in the peripheral zone (PZ), while T2w is 
used mainly for assessment of PCa in the transition zone 
(TZ) of the prostate. To implement this, PZ/TZ segmenta-
tion would mean a more demanding segmentation work for 
the radiologists, although, for big cohorts, it could also be 
automated by appropriately training a deep learning (DL)-
based algorithm.

DL techniques can also be exploited for feature extraction 
and prediction. Our decision of using hand-crafted radiomics 
was based on their higher level of interpretability, as well as 
on the existence of several previous studies. On the contrary, 
DL features are more complex to decipher, requiring spe-
cific methodologies to “open the black box” and provide an 
explanation of the output classification. One such methodol-
ogy is the use of activation or saliency maps of attention, and 
their relation to correct and incorrect classifications [37, 38]. 
Another applicable approach is training a fully convolutional 
network for segmentation of a pathological tissue (e.g., a 
tumor), and using its trained semantic layers as features for 
the classification of the pathology [39]. An explainable DL 

approach could help save time and impact the performance 
of our predictions, especially in the case of bigger patient 
cohorts. There are already several works predicting GS from 
mpMRI-only radiomics using non-explainable deep convo-
lutional layers [40–42]. Based on our results and available 
technology, a step forward would benefit from including also 
PSMA-PET radiomics and some form of explainable DL 
approach.

Conclusion

Our work shows promising results on the combined power 
of PSMA-PET and mpMRI radiomic features for predicting 
postsurgical GS in PCa patients and envisions a reliable tool 
that helps urologists and radiologists in their daily decision-
making process.
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